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Motivating example: MX3D bridge

The Turing Institute video

https://www.turing.ac.uk/research/research-projects/digital-twin-worlds-first-3d-printed-stainless-steel-bridge


Motivating example II
Febrianto, Butler, Girolami & Cirak (2021)

A railway bridge in Staffordshire which has been instrumented with fibre
optic sensors (top left), its digital twin (top right), sample sensor
measurements (bottom):



Using the Model and the Data

1. Using the measurements of the state of the system to infer the
properties of the system.

– Inverse problem

2. Using the model to answer ‘what if’ scenarios: How would the
system behave under different conditions?

– Forward problem



Rest of the Talk

1. Bayesian Inverse problem formulation.
2. Variational Bayes as an alternative to Markov Chain Monte Carlo

methods.
3. Leveraging problem structure to specify the approximating family of

distributions.
4. Results on elliptic PDEs.
5. Bimodal example.
6. Conclusions.



General Inverse Problem (Stuart 2010)

▶ Objective: Find κ ∈ K, the parameters to a model, given y ∈ Y, a
noisy observation of the solution of a PDE.

▶ For a suitable space U , let A : K → U be a possibly non-linear
solution operator of a PDE. For a particular κ ∈ K, the solution
u ∈ U is

u = A(κ). (1)

▶ To obtain observation y, we define an additive observational noise
η ∈ Y. This gives

y = A(κ) + η. (2)

▶ This is an ill-posed problem: there may be no solution, it may not
be unique, and it may depend sensitively on y.

▶ Assumptions about κ are implemented via regularisation. Bayesian
approach is one of the popular approaches:

1. Describe prior knowledge of κ in terms of a prior probability on K.
2. Use Bayes’ rule to calculate the posterior probability for κ given y.
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Example: Poisson Problem

▶ We consider a classical elliptic Poisson problem:

−∇ · (exp(κ(x))∇u(x)) = f(x), x ∈ Ω ⊂ Rd,
u(x) = 0, x ∈ ∂Ω,

(3)

where κ(x) ∈ R is the log-diffusion coefficient, u(x) ∈ R is the
unknown, and f(x) ∈ R is a deterministic forcing term.

▶ Disretise the weak form of the problem with a standard finite
element approach.

▶ Combining these terms, we obtain a linear system:

A(κ)u = f , (4)

where A(κ) ∈ Rnu×nu is the stiffness matrix, κ ∈ Rnκ is the
log-diffusion vector, f ∈ Rnu is the nodal source vector.
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Example: Prior and Likelihood

▶ Placing a zero-mean Gaussian process prior on κ gives

log p(κ) ∼ GP
(
0, kψ(·, ·)

)
. (5)

▶ Finally, the likelihood is given by

p(y | κ) = p(y | u(κ)) = N (A(κ)−1f , σ2
yI) . (6)



▶ We consider an elliptic PDE of the form:

−∇ · (exp(κ(x))∇u(x)) = f(x),

▶ Using FEM, we obtain a linear system:

A(κ)u = f ,

▶ The likelihood is given by

p(y | κ) = p(y | u(κ)) = N (A(κ)−1f , σ2
yI) .

▶ The prior is:
log p(κ) = N (0,Kψ(x, x)).

We now develop the variational inference scheme for this problem.
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Stochastic Variational Bayesian Inference

We posit a family of distributions Dq from which we choose the
minimiser of the Kullback-Leibler divergence:

q∗(κ) = argmin
q(κ)∈Dq

KL(q(κ) ∥ p(κ | y)). (7)

This is equivalent to maximising the evidence lower bound (ELBO):

q∗(κ) = argmax
q(κ)∈Dq

Eq
[
log p(y | κ)

]
−KL(q(κ) ∥ p(κ)). (8)

Generally, Eq
[
log p(y | κ)

]
is not available in closed form. Instead, we

use a Monte Carlo approximation with NSVI samples from q(κ) as follows

Eq
[
log p(y | κ)

]
≈ N−1

SVI

NSVI∑
i=1

log p(y | κ(i)), (9)

where κ(i) is the i-th sample from q(κ).
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Multivariate Gaussian Parametrisations I

Different parametrisations of q(κ) for the family of multivariate Gaussian
distributions:

1. Diagonal covariance matrix, known as mean-field VB [MFVB]

q(κ) ∼ N (µ,D)

2. Fully-specified Cholesky factor (full-covariance VB [FCVB])

q(κ) ∼ N (µ,LL⊤)

3. Cholesky factor of the sparse precision matrix [PMVB]

q(κ) ∼ N (µ, (LQL
⊤
Q)

−1)



Precision Matrices and Conditional Independence

▶ Specify the multivariate Gaussian through the precision matrix:
Q = Σ−1.

▶ The elements of the precision matrix reflect conditional
independence:

p(κi, κj | κ−{i,j}) = p(κi | κ−{i,j})p(κj | κ−{i,j}) ⇔ Qij = 0 .
(10)

▶ For more details, see Rue & Held (2005).



Leveraging Sparsity 1D Example

i j k l m

(a) Labelling of the five elements.

i j k l m


i j k l m

i × ×
j × × ×
k × × ×
l × × ×

m × ×


(b) 1-neighbourhood structure

i j k l m


i j k l m

i × × ×
j × × × ×
k × × × × ×
l × × × ×

m × × ×


(c) 2-neighbourhood structure



Leveraging Sparsity 2D Example

2D mesh

0 100 200

0

100

200

Adjacency
matrix

0 100 200

Adjacency matrix
(reordered)

0 100 200

LQ
(non-zeros)

0 100 200

Q
(non-zeros)



Experiments – 1D Poisson Problem

▶ Objective: infer the posterior distribution of κ given measurements
of y.

▶ Sensors are placed on the discretisation nodes and the sensor noise is
σy = 0.01. Five readings are taken.

▶ Constant forcing, f(x) = 1 is assumed and we impose Dirichlet
boundary conditions as u(0) = u(1) = 0.

▶ Data generated by assuming κ is a sample from a unit-variance
zero-mean GP with lengthscale ℓκ = 0.2.



Results – Uncertainty Estimates
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Results – Uncertainty Propagation

We assess the propagation of uncertainty using log of total flux through
the left boundary:

r(κ) = log

∫
Γb

eκ(s)∇u(s) · n ds, (11)

where n is a unit vector normal to the boundary.

0.50 0.45 0.40 0.35 0.30
0
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80

100
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140
Prior = 0.1

0.50 0.45 0.40 0.35 0.30

Prior = 0.2

0.50 0.45 0.40 0.35 0.30

Prior = 0.3

HMC pCN Mean-field VB Full-covariance VB Precision VB

Figure: Log of the boundary flux at the left boundary node (x = 0) for the 1D
Poisson example. For PMVB, the precision matrix bandwidth of 10 is used.



Results – Data Quality
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▶ Mean estimates for all methods get closer to the true κ with
improved information.

▶ FCVB and PMVB uncertainty estimates get narrower with increasing
number of observations and with decreasing observational noise.



Results – Number of Samples for VB

-1.0

0.0

M
FV

B
(x

)

NSVI = 2 NSVI = 5 NSVI = 10 NSVI = 20

-1.0

0.0

FC
VB (x
)

0.0 0.5 1.0

-1.0

0.0

PM
VB (x
)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

True = 0.2, Prior = 0.2

▶ Figure shows the posterior estimates for different number of Monte
Carlo samples in the estimation of ELBO,

▶ On a qualitative level, a small number of samples is sufficient to
obtain a good estimate.



Results – Computation Time

true ℓκ prior ℓκ
Time (hours)

HMC MFVB FCVB PMVB

0.1 0.1 15.2 1.1 3.6 2.1
0.2 11.1 0.7 2.7 2.1
0.3 7.2 0.6 2.3 2.0

0.2 0.1 15.2 0.6 2.2 1.8
0.2 10.4 0.6 2.3 2.0
0.3 7.0 0.5 1.7 1.8

Table: Run-times in hours for the Poisson 1D problem. For VB methods,
NSVI = 3.



Experiments – 2D Poisson Problem

▶ Same setup as before, but now with the sensor noise σy = 0.001,
and different boundary conditions.

▶ Dirichlet boundary conditions u(x, y) = 0 when x = 1 or y = 1.
Neumann boundary conditions on the rest of the boundary
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Mesh (208 elements)



2D Example – Results I

True HMC pCN MFVB FCVB PMVB

-1.000
 0.000
 1.000

SD( )
 0.100
 0.200

u( )

 0.000

 0.200

Precision
Matrix

Figure: Posterior mean and standard deviation for κ and the corresponding u
for 2D Poisson example with prior length-scale ℓκ = 0.1. The bottom row
shows the structure of the precision matrix for each inference scheme.



2D Example – Computation Cost

true ℓκ prior ℓκ
Time (hours)

HMC MFVB FCVB PMVB

0.1 0.1 240.6 6.4 29.6 28.1
0.2 295.5 6.6 32.6 28.9
0.3 242.0 7.3 27.3 30.6

0.2 0.1 242.7 6.2 34.3 27.2
0.2 264.3 7.4 33.7 34.0
0.3 221.9 7.8 31.3 34.0

Table: Run-times for different inference schemes in seconds. The number of
Monte Carlo samples is NSVI = 5 for all MFVB, FCVB, and PMVB.



Heat Example

▶ Metal rod with unknown conductivity properties (constant
throughout).

▶ A uniform heat source throughout the rod.
▶ Temperature on the RHS is fixed and unknown, and on the LHS is

fixed and known (BC).
▶ We obtain two readings of temperature in the centre of the rod.
▶ What can we say about heat conductivity, and the temperature on

the RHS (unknown BC)?



VB Can Handle Multi-modal Posteriors
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Implementation

▶ FEM C++ code written by CSMLab, led by Prof Fehmi Cirak.
▶ Our Tensorflow (Python) code performs the inference and interfaces

with the FEM module.
▶ To maximise the ELBO in (8), we use the ADAM

algorithm (Kingma & Ba 2015). ADAM is a member of a larger
class of stochastic gradient decent optimisation methods for
maximising non-convex cost functions.

▶ Available on Github.

https://www.csmlab.org/
https://github.com/jp2011/bip-pde-vi


Conclusions

▶ the mean of the variational posterior provides an accurate point
estimate irrespective of the choice of the parametrisation,

▶ VB with a full-covariance or precision matrix structure adequately
estimates posterior uncertainty compared to HMC and pCN,

▶ sparse precision matrix parameterisation leverages the structure of
the problem to balance computational complexity and the ability to
capture dependencies in the posterior distribution,

▶ VB provides a good estimate for mean and variance in a time that is
at least an order of magnitude faster than HMC or pCN,

▶ the VB estimates may be used effectively in downstream tasks to
estimate various quantities of interest.

Outlook:
▶ Leverage sparse linear algebra routines and different optimisation

schemes.
▶ Consider stochastic forcing.
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